Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tor1 regulates protein solubility in Saccharomyces cerevisiae.

Identifieur interne : 001101 ( Main/Exploration ); précédent : 001100; suivant : 001102

Tor1 regulates protein solubility in Saccharomyces cerevisiae.

Auteurs : Theodore W. Peters [États-Unis] ; Matthew J. Rardin ; Gregg Czerwieniec ; Uday S. Evani ; Pedro Reis-Rodrigues ; Gordon J. Lithgow ; Sean D. Mooney ; Bradford W. Gibson ; Robert E. Hughes

Source :

RBID : pubmed:23097491

Descripteurs français

English descriptors

Abstract

Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase.

DOI: 10.1091/mbc.E12-08-0620
PubMed: 23097491
PubMed Central: PMC3521677


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tor1 regulates protein solubility in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Peters, Theodore W" sort="Peters, Theodore W" uniqKey="Peters T" first="Theodore W" last="Peters">Theodore W. Peters</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Buck Institute for Research on Aging, Novato, CA 94945, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Buck Institute for Research on Aging, Novato, CA 94945</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rardin, Matthew J" sort="Rardin, Matthew J" uniqKey="Rardin M" first="Matthew J" last="Rardin">Matthew J. Rardin</name>
</author>
<author>
<name sortKey="Czerwieniec, Gregg" sort="Czerwieniec, Gregg" uniqKey="Czerwieniec G" first="Gregg" last="Czerwieniec">Gregg Czerwieniec</name>
</author>
<author>
<name sortKey="Evani, Uday S" sort="Evani, Uday S" uniqKey="Evani U" first="Uday S" last="Evani">Uday S. Evani</name>
</author>
<author>
<name sortKey="Reis Rodrigues, Pedro" sort="Reis Rodrigues, Pedro" uniqKey="Reis Rodrigues P" first="Pedro" last="Reis-Rodrigues">Pedro Reis-Rodrigues</name>
</author>
<author>
<name sortKey="Lithgow, Gordon J" sort="Lithgow, Gordon J" uniqKey="Lithgow G" first="Gordon J" last="Lithgow">Gordon J. Lithgow</name>
</author>
<author>
<name sortKey="Mooney, Sean D" sort="Mooney, Sean D" uniqKey="Mooney S" first="Sean D" last="Mooney">Sean D. Mooney</name>
</author>
<author>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W" last="Gibson">Bradford W. Gibson</name>
</author>
<author>
<name sortKey="Hughes, Robert E" sort="Hughes, Robert E" uniqKey="Hughes R" first="Robert E" last="Hughes">Robert E. Hughes</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23097491</idno>
<idno type="pmid">23097491</idno>
<idno type="doi">10.1091/mbc.E12-08-0620</idno>
<idno type="pmc">PMC3521677</idno>
<idno type="wicri:Area/Main/Corpus">001095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001095</idno>
<idno type="wicri:Area/Main/Curation">001095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001095</idno>
<idno type="wicri:Area/Main/Exploration">001095</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tor1 regulates protein solubility in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Peters, Theodore W" sort="Peters, Theodore W" uniqKey="Peters T" first="Theodore W" last="Peters">Theodore W. Peters</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Buck Institute for Research on Aging, Novato, CA 94945, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Buck Institute for Research on Aging, Novato, CA 94945</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rardin, Matthew J" sort="Rardin, Matthew J" uniqKey="Rardin M" first="Matthew J" last="Rardin">Matthew J. Rardin</name>
</author>
<author>
<name sortKey="Czerwieniec, Gregg" sort="Czerwieniec, Gregg" uniqKey="Czerwieniec G" first="Gregg" last="Czerwieniec">Gregg Czerwieniec</name>
</author>
<author>
<name sortKey="Evani, Uday S" sort="Evani, Uday S" uniqKey="Evani U" first="Uday S" last="Evani">Uday S. Evani</name>
</author>
<author>
<name sortKey="Reis Rodrigues, Pedro" sort="Reis Rodrigues, Pedro" uniqKey="Reis Rodrigues P" first="Pedro" last="Reis-Rodrigues">Pedro Reis-Rodrigues</name>
</author>
<author>
<name sortKey="Lithgow, Gordon J" sort="Lithgow, Gordon J" uniqKey="Lithgow G" first="Gordon J" last="Lithgow">Gordon J. Lithgow</name>
</author>
<author>
<name sortKey="Mooney, Sean D" sort="Mooney, Sean D" uniqKey="Mooney S" first="Sean D" last="Mooney">Sean D. Mooney</name>
</author>
<author>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W" last="Gibson">Bradford W. Gibson</name>
</author>
<author>
<name sortKey="Hughes, Robert E" sort="Hughes, Robert E" uniqKey="Hughes R" first="Robert E" last="Hughes">Robert E. Hughes</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (MeSH)</term>
<term>Autophagy-Related Protein 7 (MeSH)</term>
<term>Autophagy-Related Proteins (MeSH)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mitosis (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sodium Dodecyl Sulfate (chemistry)</term>
<term>Solubility (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Dodécyl-sulfate de sodium (composition chimique)</term>
<term>Facteurs temps (MeSH)</term>
<term>Mitose (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéine-7 associée à l'autophagie (MeSH)</term>
<term>Protéines associées à l'autophagie (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Solubilité (MeSH)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Électrophorèse sur gel de polyacrylamide (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Sodium Dodecyl Sulfate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Nitrogen</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Autophagy-Related Protein 7</term>
<term>Autophagy-Related Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Dodécyl-sulfate de sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Complexes multiprotéiques</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Mass Spectrometry</term>
<term>Mitosis</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Solubility</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Autophagie</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Facteurs temps</term>
<term>Mitose</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Protéine-7 associée à l'autophagie</term>
<term>Protéines associées à l'autophagie</term>
<term>Solubilité</term>
<term>Spectrométrie de masse</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23097491</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Tor1 regulates protein solubility in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>4679-88</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E12-08-0620</ELocationID>
<Abstract>
<AbstractText>Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Peters</LastName>
<ForeName>Theodore W</ForeName>
<Initials>TW</Initials>
<AffiliationInfo>
<Affiliation>The Buck Institute for Research on Aging, Novato, CA 94945, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rardin</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Czerwieniec</LastName>
<ForeName>Gregg</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Evani</LastName>
<ForeName>Uday S</ForeName>
<Initials>US</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reis-Rodrigues</LastName>
<ForeName>Pedro</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lithgow</LastName>
<ForeName>Gordon J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mooney</LastName>
<ForeName>Sean D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gibson</LastName>
<ForeName>Bradford W</ForeName>
<Initials>BW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hughes</LastName>
<ForeName>Robert E</ForeName>
<Initials>RE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>PL1 AG032118</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01 AG029631-01A1</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AG000266</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RL1 GM084432</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 HG004028</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG029631</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 LM009722</GrantID>
<Acronym>LM</Acronym>
<Agency>NLM NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54-HG004028</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR024615</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C114830">ATG7 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071183">Autophagy-Related Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>368GB5141J</RegistryNumber>
<NameOfSubstance UI="D012967">Sodium Dodecyl Sulfate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C477823">ATG1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.45</RegistryNumber>
<NameOfSubstance UI="D000071193">Autophagy-Related Protein 7</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071193" MajorTopicYN="N">Autophagy-Related Protein 7</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071183" MajorTopicYN="N">Autophagy-Related Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008938" MajorTopicYN="N">Mitosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012967" MajorTopicYN="N">Sodium Dodecyl Sulfate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23097491</ArticleId>
<ArticleId IdType="pii">mbc.E12-08-0620</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E12-08-0620</ArticleId>
<ArticleId IdType="pmc">PMC3521677</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2011 Apr;22(7):988-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 Jan 12;366(1561):71-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2000 Dec;10(12):524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11121744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2001 Sep;65(3):463-79, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11528006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2002 May 1;11(9):1107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1751-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2011;25(3):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2012 Feb;11(1):120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22103665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2003 Apr 1;12(7):749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2004 May;89(4):974-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Jun;36(6):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 May 25;14(10):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15186745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 16;279(29):29889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15138258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 14;431(7010):805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Mar;124(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1054-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 24;281(8):5037-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 May 22;580(12):2821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Jul 3;174(1):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2005 Oct-Dec;1(3):131-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16902091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 May-Jun;3(3):181-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Dec 1;21(23):3061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Mar;19(3):1271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2008 Apr;43(4):247-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Feb;4(2):e24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 May;10(5):602-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Sep;7(9):3661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18700793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2009 Feb;23(2):451-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2009 Jul;17(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2009 Jul;17(1):98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2009 Aug;14(8):996-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19360473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14914-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Jan;9(1):32-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jan 22;140(2):257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010;8(8):e1000450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16982-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2011 Jan 1;408(1):71-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20705048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Nov 1;191(3):537-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21041446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 May;3(5). pii: a004440. doi: 10.1101/cshperspect.a004440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Czerwieniec, Gregg" sort="Czerwieniec, Gregg" uniqKey="Czerwieniec G" first="Gregg" last="Czerwieniec">Gregg Czerwieniec</name>
<name sortKey="Evani, Uday S" sort="Evani, Uday S" uniqKey="Evani U" first="Uday S" last="Evani">Uday S. Evani</name>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W" last="Gibson">Bradford W. Gibson</name>
<name sortKey="Hughes, Robert E" sort="Hughes, Robert E" uniqKey="Hughes R" first="Robert E" last="Hughes">Robert E. Hughes</name>
<name sortKey="Lithgow, Gordon J" sort="Lithgow, Gordon J" uniqKey="Lithgow G" first="Gordon J" last="Lithgow">Gordon J. Lithgow</name>
<name sortKey="Mooney, Sean D" sort="Mooney, Sean D" uniqKey="Mooney S" first="Sean D" last="Mooney">Sean D. Mooney</name>
<name sortKey="Rardin, Matthew J" sort="Rardin, Matthew J" uniqKey="Rardin M" first="Matthew J" last="Rardin">Matthew J. Rardin</name>
<name sortKey="Reis Rodrigues, Pedro" sort="Reis Rodrigues, Pedro" uniqKey="Reis Rodrigues P" first="Pedro" last="Reis-Rodrigues">Pedro Reis-Rodrigues</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Peters, Theodore W" sort="Peters, Theodore W" uniqKey="Peters T" first="Theodore W" last="Peters">Theodore W. Peters</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001101 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001101 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23097491
   |texte=   Tor1 regulates protein solubility in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23097491" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020